G1 cyclins block the Ime1 pathway to make mitosis and meiosis incompatible in budding yeast.
نویسندگان
چکیده
Diploid yeast cells switch from mitosis to meiosis when starved of essential nutrients. While G1 cyclins play a key role in initiating the mitotic cell cycle, entry into meiosis depends on Ime1, a transcriptional activator regulated by both nutritional and cell-type signals. We show here that G1 cyclins downregulate IME1 transcription and prevent the accumulation of the Ime1 protein within the nucleus, which results in repression of early-meiotic gene expression. As G1-cyclin deficient cells do not require nutrient starvation to undergo meiosis, G1 cyclin would exert its role by transmitting essential nutritional signals to Ime1 function. The existence of a negative cross-talk mechanism between mitosis and meiosis may help explain why these two developmental options are incompatible in budding yeast.
منابع مشابه
Interplay between chromatin and trans-acting factors on the IME2 promoter upon induction of the gene at the onset of meiosis.
The IME2 gene is one of the key regulators of the initiation of meiosis in budding yeast. This gene is repressed during mitosis through the repressive chromatin structure at the promoter, which is maintained by the Rpd3-Sin3 histone deacetylase (HDAC) complex. IME2 expression in meiosis requires Gcn5/histone acetyltransferase, the transcriptional activator Ime1, and the chromatin remodeler RSC;...
متن کاملCDK modulation coordinates G1 events after S phase
To maintain genome stability during fluctuating environmental conditions, cells have adapted mechanisms to regulate cell cycle events. For unicellular organisms, such as budding yeast, this response is essential for the survival of the organism. For example, under conditions of nutrient limitation, diploid budding yeast cells enter meiosis and package the meiotic products into spores. The spore...
متن کاملA positive regulator of mitosis, Sok2, functions as a negative regulator of meiosis in Saccharomyces cerevisiae.
The choice between meiosis and alternative developmental pathways in budding yeast depends on the expression and activity of transcriptional activator Ime1. The transcription of IME1 is repressed in the presence of glucose, and a low basal level of IME1 RNA is observed in vegetative cultures with acetate as the sole carbon source. IREu, a 32-bp element in the IME1 promoter, exhibits upstream ac...
متن کاملIme2, a meiosis-specific kinase in yeast, is required for destabilization of its transcriptional activator, Ime1.
In the budding yeast Saccharomyces cerevisiae, entry into meiosis and its successful completion depend on two positive regulators, Ime1 and Ime2. Ime1 is a transcriptional activator that is required for transcription of IME2, a serine/threonine protein kinase. We show that in vivo Ime2 associates with Ime1, that in vitro Ime2 phosphorylates Ime1, and that in living cells the stability of Ime1 d...
متن کاملThe Cdk inhibitors p25rum1 and p40SIC1 are functional homologues that play similar roles in the regulation of the cell cycle in fission and budding yeast.
p25rum1 and p40SIC1 are specific inhibitors of p34(cdc2/CDC28) kinase complexes with B-type cyclins that play a central role in the regulation of the G1 phase of the cell cycle. We show here that low levels of expression of SIC1 in Schizosaccharomyces pombe rescues all the phenotypes of cells lacking the rum1+ gene. In addition, high level expression of SIC1 in S. pombe induces extra rounds of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The EMBO journal
دوره 18 2 شماره
صفحات -
تاریخ انتشار 1999